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Abstract

Accurate analysis of reliability of system requires that it accounts for all major variations in system's opera-

tion. Most reliability analyses assume that the system con�guration, success criteria, and component behavior

remain the same. However, multiple phases are natural. We present a new computationally e�cient technique for

analysis of phased-mission systems where the operational states of a system can be described by combinations of

components states (such as fault trees or assertions). Moreover, individual components may be repaired, if failed,

as part of system operation but repairs are independent of the system state. For repairable systems Markov

analysis techniques are used but they su�er from state space explosion. That limits the size of system that can

be analyzed and it is expensive in computation. We avoid the state space explosion. The phase algebra is used to

account for the e�ects of variable con�gurations, repairs, and success criteria from phase to phase. Our technique

yields exact (as opposed to approximate) results. We demonstrate our technique by means of several examples

and present numerical results to show the e�ects of phases and repairs on the system reliability/availability.
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1 Introduction

Accurate analysis of reliability of system requires that it accounts for all major variations in system's operation.

Most reliability analyses assume that the system con�guration, success criteria, and component behavior remain

the same. However, multiple phases are natural. The system con�guration, operational requirements for indi-

vidual components, the success criteria, and the stress on the components (and thus the failure rates) may vary

from phase to phase. Various techniques and tools have been developed [1]-[4] to analyze single mission system.

Phased-mission system analysis also has received substantial attention by researchers [5] - [12].

Depending on the requirements during di�erent phases, di�erent components may be placed in or removed

from service or repaired during a phase to balance the system reliability and the cost of operation. The success

of a redundancy management scheme determines if a system is operational or not. The usage of subsystems may

also vary from phase to phase and subsystem supporting those services may remain idle or may be switched

o�. Furthermore, the duration of any phase may be deterministic or random. All these variations a�ect the

system reliability. For example, in an airplane system, landing gear and its associated control subsystems are

not required during cruising phase. So exact analysis should not ignore such behaviors.

Sometimes the e�ects of individual phases may be ignored in favor of simpler analysis. For example, in case

of landing gear example, if the failure rate of landing gear is very small for all phases, counting the failure of

landing gear during entire 
ight may not a�ect result signi�cantly. On the other hand, in another example,

in a space mission, the �rst phase (launch) is the most severe and uses many components for a few minutes

whose failure rates are high. Using the high failure rates and exposure time equal to the mission time for those

components is guaranteed to result into useless analysis.

In approximate analysis, most of the time only conservative estimates are made yielding the worst case

unreliability of the system. One adverse e�ect of this is that the systems may be over-designed. A more accurate

analysis avoids this, in particular where there may be wide variations in the parameters and system con�guration

from phase to phase. If one phase experiences much more stress than others then it is necessary to account for

such e�ects properly. Di�erent aspects of phased-mission analysis are discussed by several researchers [5] - [12].

A phased-mission system can be analyzed accurately using Markov methods. However that su�ers from

state-space explosion and is expensive in time. In [12], the authors presented a methodology to analyze non-

repairable phased-mission systems in which failure rates, con�guration and success criteria may vary from phase

to phase. Moreover, the success criteria can be speci�ed using fault trees or an equivalent representation. A

majority of systems can be represented using fault trees. They solve the system without generating a Markov

chain. Phases are handled one at a time to compute the overall unreliability of the entire mission. This technique

is computationally less expensive. As a result, large systems can be managed.
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It is possible that during long missions, repairs are carried out on components or subsystems to increase

the life of system. For example, in a long manned space mission, failed components will be repaired and must

be appropriately accounted for in the analysis. The form of repair may vary. For example, a system may be

completely replaced by another new system or only maintenance checks may be carried out and subsystems are

repaired in the conventional sense. Markov analysis techniques can be used but, as stated earlier, may require to

manage huge state space and computation time. We extend the methodology of [12] in this paper signi�cantly by

including repairs of independent components. We require that the system success criteria is dependent only on

the state of individual component and as long as the success criteria is satis�ed, the phase remains operational.

The results of this paper allows analysis of large systems with component repairs e�ciently. In the descriptions

below, we will assume that a reader is generally familiar with Markov chain-based analysis. We will use it to

describe certain situations but will propose a methodology which does not explicitly generate the state space.

In all of this work, phase transitions are assumed to be instantaneous and no loss or gain is assumed in the

probability of any particular state in Markov chain. However, due to change in success criteria, some operational

states may be seen as failure states in the next phase and are treated as latent failures for analysis. For example,

if the landing gear develops a problem during cruising, the 
ight will continue in air but the last phase, landing,

may not be successful. Thus the landing gear failure is latent. If the failed landing gear can be repaired during

the 
ight, then the e�ect can be accounted for in the analysis.

We present some related work in the next section. Then we describe some concepts which we will use

throughout the paper. Following that we present handling of repairable systems and our methodology to manage

computation e�ciently. We present a few examples and demonstrate the e�ectiveness of our work. In all cases,

the results are compared with EHARP [10] results which compute unreliability of phased mission system correctly

as it follows state-to-state mapping from phase to phase.

2 Related Work

Esary and Ziehms [5] discuss analysis of multiple con�guration systems during di�erent phases of a mission

using reliability block diagram (RBD). For phase p, each component is represented by a series of a blocks, one

corresponding to each phase starting with phase 1 to phase p. All phase RBDs are connected in series and

solution of this RBD correctly predicts the reliability of the three phase system. This results in a large RBD and

failure of components cannot be accounted for. Pedar and Sarma [6] enhanced this technique to systematically

cancel out the common events in earlier phases which are accounted for in later phases in the RBDs. We will user

Esary and Ziehms's representation for components in various phases for analysis but perform the computation

di�erently.
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Alam and Al-Saggaf [7] use Markov chain and Smotherman et. al. [9] use a non-homogeneous Markov model

to include phase changes in the model. The Markov chain in both cases can be very huge. It should be pointed

out that the latter technique allows the most accurate analysis if phase changes are not smooth. However, this

requires large amount of storage and computation time to solve a system, thus limiting the type of system that

can be analyzed. Somani et. al. [10] presented a computationally e�cient method to analyze multi-phased

systems and a new software tool for reliability analyses of such systems. A system with variable con�guration

and success criteria results in di�erent Markov chains for di�erent phases. Instead of generating and solving

an overall Markov chain, they advocate generating and solving separate Markov chains for individual phases.

The variation in success criteria and change in system con�guration from phase to phase are accommodated by

providing an e�cient mapping procedure at the transition time from one phase to another. While analyzing a

phase, only the states relevant to that phase, are considered. Thus each individual Markov chain is much smaller.

Using a similar approach, Dugan [8] suggested another method in which a single Markov chain with state

space equal to the union of the state spaces of the individual phases is generated. The transitions rates are

parameterized with phase numbers and the Markov chain is solved p times for p phases. However, the failure

criteria is also the union of all phases failure criteria as any failed state in any phase is considered failed state for

the whole system. Thus, the scheme is only applicable is the success criteria does not change over the phases.

3 Distribution Functions with Mass at Origin

As in [12], we will use the concept of cumulative distribution functions with a mass at the origin in our work.

Consider a random variable X with cumulative distribution function given by

FX(t) = (1 � e��T1) + e��T1(1� e��t):

This function has a mass at the origin given by P (X = 0) = (1 � e��T1) . The second term represents the

continuous part of the distribution function.

In order to illustrate the use of such a CDF, consider a component with a constant failure rate of � that

is used in a phased mission system. Assume that the system has just completed one phase of duration T1 and

is currently in the second phase. The above CDF can be assigned as the failure probability distribution of

the component in the second phase. The �rst term in the above expression represents the probability that the

component has already failed in the �rst phase. The second term represents the failure probability distribution

for this component for the second phase. The time origin for the second phase is reinitialized to the beginning

of the phase. We will use such distribution functions to represent failure probabilities of individual components

during di�erent phases.
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3.1 Component Model with Repairs

The model described above can be extended to include repair for a component. Let X be a component whose

failure and repair rates in phase p are denoted by �Xp and �Xp, respectively. Failure and repair times are

assumed to follow exponential distribution. We de�ne

�Xp(t) = e�(�Xp+�Xp)�t and�Xp =
�Xp

�Xp+�Xp
(1)

where t is the time after the system entered the phase p. We can compute probabilities of component X being

operational (up) or not-operational (failed) by solving a two state Markov chain for the component. At the

beginning of a phase a component may be in an operational or failed state. With either of the initial states, the

component may be operational or failed at the end of the phase due to failure and repairs involved during that

phase. To compute the probabilities for a component to be operational or failed at the end of the phase, we need

to compute the probabilities of all the four possible cases.

We will follow a 4 character su�x with probabilities. The �rst character is the name of the component (i.e.

X, Y ). The second character is u for up or f for failed and is associated with the starting state of that component

in a phase. The third character is u or f as earlier. It can also be e if it refers to probability at the end of a phase

or a b if it refers to the probability at the beginning of a phase. The fourth character p is for phase number. The

�rst and the fourth characters will change with components or phase number we are dealing with. If it is given

that the component X is up, then the probabilities that it will remain up or failed after time t has elapsed in

phase p are given by

pXuup(t) = �Xp(t) + �Xp � (1� �Xp(t)) (2)

and

pXufp = (1� �Xp(t)) � (1 � �Xp): (3)

Similarly if it is given that component X is failed, then the probabilities that it will remain up or failed are given

by

pXfup = �Xp � (1� �Xp(t)) (4)

and

pXffp = 1� �Xp � (1� �Xp(t)): (5)

If the probabilities that component X is initially up and failed at the beginning of the phase p are pXubp and

pXfbp, respectively, then the probabilities that the component is up or failed after time t has elapsed in phase p

are given by

PXuep(t) = pXubp � pXuup(t) + pXfbp � pXfup(t) (6)
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and

PXfep(t) = pXubp � pXufp(t) + pXfbp � pXffp(t): (7)

The overall operational and failed state probabilities for a component can be evaluated at the end of phase p by

substituting t = Tp in the the above expressions. They include the mass at the origin (the initial up or failed state

probabilities). Tp is the duration of phase p. For example, suppose for a componentX in phase 1, if �X1 = 9��X1,

T1 = 10 hrs, and �X1 and �X1 are chosen so that �X1(10) = 0:9. �X1 = 0:9. Then, pXuu1 = 0:99, pXuf1 = 0:01,

pXfu1 = 0:09, and pXff1 = 0:91. If pXub1 = 1:0 and pXfb1 = 0:0, then pXue1 = 0:99 and pXfe1 = 0:01.

If, on the other hand, pXub1 = 0:99 and pXfb1 = 0:01, then pXue1 = 0:99 � 0:99 + 0:01 � 0:09 = 0:981 and

pXfe1 = 0:99 � 0:01 + 0:01 � 0:91 = 0:019.

4 Phased-Mission and Component Repairs

In analysis of reliable system when a system enters a failure state during a phase, the entire mission is considered

to have failed. So the next phase only begins, if the system remains operational during all previous phases. If the

components are not repaired, the success or failure of system depends on the cumulative operational probabilities

and success criteria de�ned by the combinations of states of operational components. In such cases, as shown in

[10]-[12], one can compute the success probability of the whole mission.

Notice that a system state may be considered as a failed state in phase p but may be a success state in the

next phase due to a less stringent success criteria. This is acceptable behavior even in reliable systems. In such

cases, all state occupation probabilities (SOPs) accumulated in such states up to only phase p are considered

to be contributing towards failure of mission. Thereafter they are considered as part of success. This is key to

correct analysis of a phased-mission system and is implemented in EHARP.

In certain situations, however, it is possible to design systems that include repairs to keep reliability high.

For example, in a long mision, to improve reliability and performance, it may be advisable and necessary to

carry out repairs on system during operation of system. Since in di�erent phases success criterias vary, all of the

components may not be used in all phases. When certain components are not required for the system operation,

they may be repaired and employed again in the following phases. The repairs are to remain in ready state for

future phases. In phases when repairs are carried out, the system status is not a�ected by the components under

repairs. In Markov chain representation this implies that the repair transitions are from failed states to failed

states or operation states to operation status. In such cases, we can compute reliability more e�ciently using

the approach of this paper.

For example consider two components, A and B, system which are used alternately in two consecutive phases.
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Both components can fail in either phase but only the component not in use in a phase only undergoes repairs

in that phase. The system operational and failed states for the two phases are shown in Figure 1.

BA

A
B is repaired

B
A is repaired

1 1

0 1

1 0

0 0

Fail

Fail

1 1

0 1

1 0

0 0

FailFail

Phase 1

Phase 2

(a) A two unit system

Figure 1: A two component system and its failed states

In a repairable system, it is also possible that the system may enter from a failed state to a success state

within the same phase. Since the success criteria is speci�ed using combinatorial methods, this will happen if the

system up or failed state depends on a component which is also being repaired in that phase. In such cases, use

of combinatorial methods only will not allow us to pay us attention to the fact the system may transit through

the failed states. One important consideration here is that must such transitions be allowed in the same phase?

Strictly speaking, for critical operation system, once a system failure has occurred, it is catastrophic and must

be treated as such. This is, therefore, obviously not allowed for reliable system as they are considered failed once

the system enters a failed state. In that case, the technique of this paper cannot be applied as the system does

not remain symmetric. Such systems can only be solved using the techniques described in [7, 9, 10] and the tools

such as EHARP.

There are many other scenarios where the techniques developed in this paper will apply. In this paper we are

assuming that component repairs are independent of system states and are carried out based on the component

states only, the success criteria may be such that this does not impact the results. If only those components

are repaired that are not participating in the operation of a system in that phase then the success criteria

automatically satis�es the requirement for correct analysis. This is the case in the example of Figure 1. This is

because the up or failed state of such components would not a�ect the analysis as they do not a�ect the success

criteria. Alternatively, if the approach for success is that \all is well if the end is well," then also this analysis can

be used. What we mean by this is that if it is the system state at the end of a phase that counts and transient

states during the operation do not matter (or do not matter \much"), then this technique can be used.
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Another question that arises is that can one start the next phase or not in a state where the system is

considered failed. For reliability analysis, the obvious answer is no as the system has already failed. But in some

analysis, like performability or availability, this is obviously acceptable. Thus handling of such states depends on

the system de�nition. This is open to interpretation. For availability and performability analysis, if a particular

phase may fail in a particular combination, that combination may be considered further as the system may

recover from it due to repairs. In such cases, it is possible, that the next phase can begin, even if the system is

in a failed state since it is possible that the system is brought back up in an operational state. So, in essence we

may be more interested in the availability of a system during a particular phases and not reliability according

to de�nition of reliability. The availability then can be used to compute the performability of the system. This

analysis is beyond the scope of this paper and is subject of our further research.

4.1 Examples Used in the Paper

To describe and show the e�ectiveness of the work here, we will use the following three examples.

Example 1. Our �rst example is the the one described earlier of a two components A and B, system that

can be represented using four states in a Markov chain as shown in Figure 1. One component is repaired while

the other is used for the system operation. Thus failure and success of system depends on the component being

used. This may correspond to a factory 
oor where two machines are alternately used while other goes through

its repair (or maintenance) cycle and is repaired as needed to bring it up to the fully operational state. We will

consider a four phased system with di�erent parameters and phase durations.

Example 2. The second example is of a slightly bigger system where we have more scope to show changes

in system con�guration that lead to system failure and success and �ner points of the complexity involved in

analysis. This system consists of three component, A, B, and C. One of these components may be repaired in

a phase while the other two are used in a phase in some combinations. The system remains operational as long

as the speci�ed success criteria is satis�ed. The success criteria for each of the three phases is expressed using

fault trees. Each time we use two components and depending on the requirements we may require both or any

one of them operational. The failure rates of three components are �a, �b, and �c, respectively, and these are

de�ned for each phase separately. The repair rates for these parameters are �a, �b, and �c, respectively. Two

particular con�guration using two out of the three component are shown in Figure 2a.

A Markov chain for a three component system with all repair arcs is also shown in Figure 2b. In the Markov

chain representation, a 3-tuple represents a state indicating the status of the three components respectively. A

\1" represents that the corresponding component is alive and a \0" represent that the component has failed. For
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A B C

X Y X Y

(a) A three unit system

CONFIGURATION 1 CONFIGURATION 2

1  0 0

Markov Chain for a three component system with repairs

1 1 1

0 0 1

1 1 0

1 0 1

0 1 1

0 1 0 0 0 0

(a) (b)

Figure 2: (a) Two con�guration of a three component system and (b) the Markov chain with all failure and

repair arcs.

example, a state (101) implies that component B has failed and the other two components are alive. A transition

from one state to another state has a rate associated with it which is the failure rate of the component that fails

or repair rate of the component that is repaired. For example, a transition from state (011) to state (010) has a

transition rate of �c. States marked F are failure states. Similarly, a transition from state (010) to state (011)

has a transition rate of �c.

Depending on success criteria and system parameters, only some of these states will be success states in each

phase. Some of the arcs may have 0 rate associated with them or they may not exist. For example, if a repair

is not active, the corresponding arc may be dropped. We will use several combination of two possible success

criterias in a three phase system. In each of these cases, one of the components will not be used in each phase

and will be repaired. The component parameters and phase duration may vary.

X Y Z

CONFIGURATION 1

X Y Z

CONFIGURATION 3CONFIGURATION 2

X Y Z

Figure 3: (a) Three con�guration of a three component system.

Example 3. For our third example, we will use \all is well if the end is well approach." We will use the

same three component system of Example 2 but will use all three components in each phase. The three phase

con�gurations to be used are shown in Figure 3. The components are also repaired in each phase. As long as a
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phase terminates satisfying the success criteria. We will compare the results with the case when repair arcs are

not allowed from the failed state (analysis performed using EHARP) and to notice the inaccuracies incurred in

computation.

5 Phased-Mission Analysis

Suppose we are given the failure, and repair rates for each component for each phase and the success criteria

for each phase. The component failure and repair rates may be phase dependent. We assume that the phase

durations are deterministic.

To account for phase-dependent failure and repair rates, we use the component model for failure and success

distribution with mass at origin for each component as described in Section 3.1. We compute the distribution of

failure for each component for each phase using the initial (beginning of that phase) up and failed probabilities

and failure and repair rates for that phase. The failure distribution function is described in Equation 7. In there,

time t is measured from the beginning of phase p so that 0 � t � Tp. Tp represents the duration of phase p. This

expression is in recursive form and can be further simpli�ed by substituting PXubp = PXue(p�1)(Tp�1) (the �nal

values for phase p � 1 as the initial values for phase p). But we prefer to leave the expressions for each phase

as they are in the recursive form as we need individual phase components in our computation to combine the

results for all phases together.

Notice that a component may be up or failed in any phase with the distributions described in Equations 6

and 7 irrespective of its status in the previous phase due to failure and repairs of that component in that phase.

This is in contrast to non-repairable system where a component can be up only if it is up at the beginning of

the phase.

If the failure and repair rates are age-dependent, then one would have to consider time as a global parameters,

i.e., time starts with the beginning of a mission and phase p starts at time CTp�1 =
Pp�1

l=1 Tl and �nishes at

CTp =
Pp

l=1 Tl. The probabilities Pxuup, Pxufp, Pxfup, and Pxffp are calculated using a single component

model where both failure and repair rates are function of time. The resulting component behavior is represented

using a more complicated non-homogeneous Markov chain for which appropriate di�erential equations can be

easily developed. However, solution of these equations does not have a closed form solution for general �(t)

and �(t) [14]. In speci�c cases when �Xp(t) = 0 and only failure rate �Xp(t) is a function of time, we can

compute pxfup = 0:0, pxffp = 1:0, pxuup = 1 � e
�

R
CTp

CTp�1

�Xp(�)d�
and pXuup = e

�

R
CTp

CTp�1

�Xp(�)d�
. The rest of

the computation remains the same.
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5.1 Management of Phase-Dependent Success Criteria

The success criteria in di�erent phases may be di�erent for a variety of reasons including (i) not all components

are used in all phases, (ii) the expected performance out of individual components may be di�erent in di�erent

phases, (iii) individual subsystems may be dropped or included in the system, (iv) the dropped (not used)

subsystem may be repaired, and (v) additional redundancy may be provided or redundancy levels may be

reduced for certain tasks.

Due to a change in success criteria and repairs, it is possible that some combination of failures of components

in one phase leads to failure of the system whereas the same combination does not lead to failure in some other

phase. The following �ve scenarios arise in computation at the time of phase transition from phase p to phase

p+ 1. The �rst four of these are the same as described in [12] for non-repairable system.

1. A combination of component failures does not lead to system failure in both phases p and p + 1.

2. A combination of component failures leads to system failure in both phases p and p+ 1.

3. A combination of component failures does not lead to system failure in phase p but leads to system failure

in phase p+ 1.

4. A combination of component failures leads to system failure in phase p but not in phase p+ 1.

5. Due to repair the system in a failed state may transit back to a up state.

The mechanism to compute unreliability of a system at time t, whose behavior is described using fault trees

for di�erent phases, is to compute the probabilities of all events at time t and then evaluate the fault tree using

those event probabilities. The events here are whether components are up or failed. We already have described

mechanism to compute the event probabilities at time t in Section 3.1. Using that we can evaluate the fault tree

applicable at time t.

The �rst three cases listed above directly contributes towards unreliability or reliability and are taken care

appropriately by a fault tree evaluation. Fault tree for a phase include failure combinations which remain

common in all phases and those combinations which are considers as success earlier but are treated as failure

in the current phase. Such combinations can be treated as failure combinations over all phases as the system

eventually fails in phase where this combination leads to system failure. These are referred to as latent failures

in [11]. Hence applying the failure criteria of the current phases to previous phases is correct and appropriate.

The unreliability can be evaluated by evaluating the fault tree for current phase.

However, in order to compute correct unreliability, we must compute the probability of the system being in

failed state in any phase. The fault tree evaluation for the current phase does not include the last two cases.
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If a system state is a failed state up to phase p and then, it is a up state, the probability accumulated in that

state up to the end of phase p must be counted towards unreliability. Such failure combinations can be identi�ed

using phase algebra as described in [12].

The only additional complication now is due to repairs as listed in case 5. We need to identify the probability

that is once associated with a failed state in a previous phase but now is been associated with a success state.

A straightforward evaluation of fault tree associates such probabilities with success states that get counted as

reliability. We need to identify probabilities. This can be done by extending the phase algebra.

Notice that even if the success criteria remains, the last scenario must still be analyzed and accounted for.

Also notice that in most cases, we assume that the components being repaired are those which are not being

required for system operation in that phase. Therefore, the success criteria will not remain same over all phases.

In a Markov chain-based analysis, it is easier to keep track of the system states, and therefore, change in

system success criteria could be easily accounted for. However, in the case of a fault tree, this change needs to

be accounted for by considering those combinations when the system may or may not fail at the time of a phase

transition.

Thus, our methodology consists of the following steps. We divide the system unreliability of a phased mission

system into three parts: (i) common failure combinations; (ii) phase failure combinations, and (iii) repair to

success combinations. Common failure combinations are speci�ed by the fault tree description of the current

phase. Phase failure combinations and repair to success combinations are identi�ed using the phase algebra.

These includes all those factors which describe failure in previous phases but are not considered as failure now

or those 
ows which occurred from failed combinations to success combinations.

5.2 Phase Failure and Repair to Success Combinations

To determine phase failure and repair to success combinations for a phase p in a P phase system, we use the

following procedure. Let Ep be the Boolean logic expression specifying the failure combinations for phase p.

Then phase failure combinations which are treated as success combinations for all the subsequent phases and

repair to success combinations for phase p, combinely denoted as (PFCp), are given by

PFCp = (� � � ((Ep ^Ep+1) ^Ei+2) � � � ^EP ):

In the above expression, we include only those combinations which are failure combinations in phase p but are

not failure combinations in any of the subsequent phases. This expression can be simpli�ed as

PFCp = Ep ^ (Ep+1 _ � � � _EP ):

The form of the expression are the same as that is given in [12]. Reader who is familiar with the work in
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[12] should be careful while reading the section as there are a few di�erences for the algebra here from the one

described in [12]. The rules for manipulating expression are di�erent to account for repairs. In fact, they are

same as applicable for Boolean algebra and the special treatment for non-repairable systems as in [12] is not

required any more. Also, the computation of probability requires further attention.

5.3 Phase Algebra

Let x = 1 mean that component X has failed. Then x = 0 implies that component X has failed and x = 1

means that component X is operational. Using this notation, for the system described in Figure 1, there is only

one possible con�guration but the component used in a phase changes from phase to phase. Thus, the following

Boolean expression describe the failure for any phase. Also, the component not being used in a phase is assumed

to be repaired.

SE(X) = x

Similarly, for the system described in Figure 2 the following Boolean expressions describe the failure combi-

nations for phases using OR or AND con�gurations.

ORE(X;Y ) = x+ y

ANDE(X;Y ) = x y

Notice that X and Y are only parameters here and will be replaced by A, B, or C depending on the use

of components. It should also be noted that event x denotes the failure of component X in that phase only.

Thus for each phase, we need to de�ne a separate symbol for each component. This is very similar to Esary

and Ziehms notation where they have a separate symbol denoting failure of a component in each phase. Let

xp = 1 denote the event that component X is operational during phase p. This is irrespective of the status of

that component in any previous phase. With this addition, the Boolean expression for phase p for system 1 is

given by the following.

SEp(X) = xp

Similarly, the expressions for system 2 become

OREp(X;Y ) = xp + yp

and

ANDEp(X;Y ) = xp yp

respectively.
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Using the above two phases, it is possible that a system may be have AND con�guration in phase p followed

by AND or OR con�guration in phase p+1 or OR con�guration in phase p followed by AND or OR con�guration

in phase p + 1. The four possible combinations PFCs for phase p assuming that phase p+ 1 is the last phase,

components X and Y are used in phase p, and components Y and Z are used in phase p+1 are given in Equation

8.

PFCAND(X;Y )pOR(Y; Z)p+1 = (xp yp)(yp+1 + zp+1) = (xp yp)(yp+1 zp+1)

PFCAND(X;Y )pAND(Y; Z)p+1 = (xp yp)(yp+1 zp+1) = (xp yp)(yp+1 + zp+1)

PFCOR(X;Y )pOR(Y; Z)p+1 = (xp + yp)(yp+1 + zp+1) = (xp + yp)(yp+1 zp+1)

PFCOR(X;Y )pAND(Y; Z)p+1 = (xp + yp)(yp+1 zp+1) = (xp + yp)(yp+1 + zp+1)

(8)

When the expression for PFCp is simpli�ed, regular Boolean algebra rules can be applied. For this purpose,

if p and q are two phases, then xp and xq must be treated as separate variables. The normal Boolean algebra

rules such as xp xp ! xp, xp xp ! xp, xp xp ! 0, and their dual apply. Any product terms involving xp or xq

or their complements must be retained as it.

An expression such as xpxq means that component X is operational at the end of phase p but fails by the

time phase q is �nished. On the other hand, an expression like xp xq implies that component X is failed at the

end of phase p but is operational at the end of phase q due to repair carried out during the process. Thus, if

p = q � 1 (two consecutive phases), then probability P (xpxq) is given by PXubpPXufq and probability P (xpxq)

is given by PXfbpPXfuq. Other combinations are evaluated in a similar fashion. If no repair is carried out then

PXfuq = 0:0.

5.4 System Unreliability

Using the phase success criterias for di�erent phases and phase algebra we compute the system unreliability as

follows. For a P phase system, we �rst compute the PFCp's for all phases assuming P as the last phase. Then

the system unreliability is given by

UR = P (EP ) +

P�1X

p=1

P (PFCp)

where P (EP ) is the probability of failure evaluated using the fault tree EP of phase P (the last phase) and the

failure distribution function calculated for each component as described in Section 3. P (PFCp) is the probability

of phase failure combinations for phase p.

Interpretation of Boolean Expressions While computing probabilities of PFCp's, derived above, we may

encounter expressions like x1x2x4x5. What it means is that we are looking for probability of a combination of

events where Component X remains operational up to the end of phase 1, fails by the time phase 2 ends, but is
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operational again by the end of phase 4, and then fails by the time phase 5 �nishes. The following tree is useful

in explaining how to compute the probability of this combination of events for component X.

U

U

U

U U U U U U U U

UU U

D D D D D D D D

DD U

D

D D D D

1

2

3

4

5

Figure 4: A component up/fail tree over multiple phases

In the tree if we assume that the root at level 1 is representing an event that component X is up at the end

of phase 1 (there is certain probability associated with it), then the left child (at level 2) is representing that

it is up at the end of phase 2 and the right child (at level 2) is representing that it is failed. We can compute

the probabilities of these events using expressions for PXuu2 and PXuf2 from phase 2 parameters. Similar

interpretation exists for children of level 2 nodes from phase 2 to phase 3 as the component state changes. To

go from Component X has failed at the end of phase 2 to the state that it is operational at the end of phase 4,

there are two routes, i.e., x2 ! x3 ! x4 and x2 ! x3 ! x4. We need to compute the probabilities of both paths

and then add them up to arrive at the probability of combination x2x4.

We may encounter any combination of such events for a component but it should be obvious that such

computations are required to be done for each component and not for system states. For a component, if there

are p phases, then there at most 2p+1 values which we need to store. In an N component system, this amounts

to N2p+1 values. On the other hand in a system with N components, there could be up to 2N states and we

have to analyze them for p phases. So we may be storing up to p2N states combination. Normally, N >> p (will

not be the case for examples in the paper for the obvious reasons). Thus the technique here is computationally

much more e�cient then generating a state space and computing state occupation probabilities for those states

for each phase given a distribution from a previous phase operation.
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5.5 Computing Transient Behavior

In the previous section, we outlined the mechanism to compute unreliability at the end of a mission, that is, the

end of the last phase. Sometime one may be interested in computing the unreliability behavior during all phases.

This means we need to compute unreliability for each phase as a function of time. It turns out that this is not

expensive and can be easily accommodated in our methodology as the PFCs calculation is recursive.

Recall that PFCs for a phase are computed as

PFCp = Ep ^ (Ep+1 _ � � � _EP ):

Also, the unreliability at the end of a mission is computed using the expression

UR = P (EP ) +

P�1X

p=1

P (PFCp):

In a P phase system, we de�ne PFCP = EP then the unreliability for a P phase system can be written as

UR =

PX

p=1

P (PFCp):

Thus, to compute unreliability at the end of phase p, we need PFC1, PFC2, � � �, PFCp where the PFCs must

be calculated using phase p as the last phase. We de�ne PFCi;p as the PFC of phase i, i < p, assuming phase

p as the last phase. Then the following relation holds.

PFCi;p = PFCi;p�1 ^Ep

The unreliability of the pth phase is computed by using the following relation.

URp =

pX

i=1

P (PFCi;p)

and the PFCi;p can be computed recursively using the results of PFCi;p�1 and Ep. With this recursive relation,

one may compute reliability of phase p using the result of phase p � 1.

5.6 Latent Failures

It should also be noticed that at the transition of a phase, one may see a upwards change in unreliability value at

the phase transition time. This happens if the next phase has di�erent success criteria than the current phase.

In that case it is possible that that some of the success states in phase i may be failed states in phase i+ 1. We

de�ne them as latent failures as the system may fail as soon as the phase change occurs. For example, in an

automobile system, on a freeway we may be cruising at a �xed speed and we may not need the brake subsystem
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in a car. But as soon as we hit a city limit, a phase change occurs and if the brakes are not fully functional, we

are likely to hit some other vehicle. To compute unreliability increase due to phase change from phase i to phase

i + 1, we compute URi. Then, we compute URi+ which is just after the end of phase i and beginning of phase

i+1. For this purpose, we modify the success criteria and it is now a logical sum of the success criterias of phases

i and i+ 1 evaluated at the end of phase i using parameters of phase i. We de�ne this as Li = Ei + Ei+1 with

Ei+1 speci�ed using component status at the end of phase i. PFCs also need to be reevaluated as Li instead of

Ei for the phase i (for earlier phases, we will still use Ep and not Lp for p < i).

We will demonstrate our methodology using the examples described above in the following section.

5.7 Example Computations

In the �rst example, we use the two component system with four phases. In the �rst phase, we require component

A for operation (and therefore there is no repair on it, see discussion above in Section 4). Component B has

associated with it both failure and repair rates. Then we alternate between the use of component and repair.

Thus the success criterias for four phases are speci�ed by

E1 = SE1(A) = a1; E2 = SE2(B) = b2; E3 = SE3(A) = a3; E4 = SE4(B) = b4: (9)

Using the above information, at the phase changes from p to p + 1, there could be latent failure (they are

in this system) and to evaluate unreliability including phase change boundary, we will use Li instead of Ei as

discussed above. The success criteria with latent failures is given by

L1 = SE1(A)+SE1(B) = a1+ b1; L2 = SE2(B)+SE2(A) = b2+a2; L3 = SE3(A)+SE3(B) = a3+ b3: (10)

We assume that there is no phase change after phase 4. Using this information we can compute PFCs as follows.

PFC12 = (E1 �E2) = a1b2

PFC13 = (PFC12 �E3) = a1b2a3

PFC23 = (E2 �E3) = b2a3

PFC14 = (PFC13 �E4) = a1b2a3b4

PFC24 = (PFC23 �E4) = b2a3b4

PFC34 = (E3 �E4) = a3b4

(11)

Now to compute, latent PFCs (that is including latent failures at the phase transition points), we use the

same expressions except that we need to Li instead of Ei and obtained the following LPFCs. Notice that in the

recursive function, we continue to use PFC and Li is only used for the current last phase.
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Table 1: State Probabilities and Unreliabilities for a two component system

State BP1 EP1 BP2 EP2 BP3 EP3 BP4 EP4

Factor 1.000 1.000 1.000 0.891 0.891 0.8912 0.8912 0.8913

11 1.000 0.891 0.891 0.891 0.891 0.891 0.891 0.891

10 0.000 0.009 0.000 0.099 0.000 0.009 0.000 0.099

10 0.000 0.099 0.000 0.009 0.000 0.099 0.000 0.009

00 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001

UR 0.000 0.100 0.109 .1981 .206119 0.2855071 0.29265203 0.36338683

LPFC12 = (E1 �L2) = a1a2b2

LPFC13 = (PFC12 � L3) = a1b2a3b3

LPFC23 = (E2 �L3) = b2a3b3

(12)

Then the unreliability at the end of phase p and at the beginning of phase p + 1 is given by the following

expressions.

URp =
Pp�1

i=1 P (PFCi;p) + P (Ep)

LURp =
Pp�1

i=1 P (LPFCi;p) + P (Lp)
(13)

We computed numerical results using above expressions and parameters values which are easy to verify by

hand computation. We �rst used phase durations for each phase as 10 hours and value of failure and repair rates

for both components in such a way that the factor � at phase duration of 10 hours is equal to 0.9. Also, if repair

is applicable, then parameter � in all phases for applicable components is also 0.9. Using, these parameter values,

we get the results shown in Table 1. Here BP and EP stands for beginning of phase and end of phase and we are

tabulating SOP for each state, reliability, and unreliability and we have a multiplication factor associated with

all column entries. Idea is to be able to clearly see that the results are correct. The results are obtained using

SHARPE [2] program where PFC expressions were hand coded, EHARP [10], and hand calculations. the results

match in all cases to 9 signi�cant digits. The multiplication factor only applies to SOPs and the unreliability

values are as they are listed.

To give a better idea appreciation for results and match the results of this table to that obtained using

Markov chain analysis, the Markov chains and the initial state occupation probabilities for four phases are

shown in Figure 5. Any state occupation probability not shown is zero (that is the case for three states out of

four in every phase). Two of the states are failure states in each phase. One of the remaining two states becomes

a latent failure state. Thus only one state is operational state at the beginning of each phase.
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Figure 5: Markov Chains for four phases with initial SOPs

Table 2: Unreliabilities for a two component system (variable parameters)

Case EP1 BP2 EP2 BP3 EP3 BP4 EP4

1 (�10�4) 0.99995000 1.63198093 2.63176774 3.26369553 4.26331917 4.89514383 5.89460434

2 (�10�4) 0.99995000 1.99980001 2.99955004 3.99920011 4.99875021 5.99820036 6.99755057

3 (�10�3) 0.99950016 1.09938570 2.09778703 2.19756275 3.19486645 3.29453247 4.29073975

4 (�10�3) 0.99950016 1.99800133 2.99550450 3.99201066 4.98752081 5.98203595 6.97555707

5 (�10�4) 0.99995000 1.06315547 2.06299916 2.12619791 3.12593531 3.18912734 4.18875844

6 (�10�4) 0.99995000 1.09993950 2.09977952 2.19975802 3.19948805 3.29945556 4.29907563

7 (�10�3) 0.99950016 1.00948962 2.00798080 2.01796017 3.01544338 3.02541268 4.02188894

8 (�10�3) 0.99950016 1.09939522 2.09779654 2.19758177 3.19488546 3.29456098 4.29076824

Next we used other data to compute the results. In all cases the repair rate if applicable remains to be

0.100/hour. In the �rst four cases, we use failure rate of each component irrespective of usage as 0.00001/hour.

In the last four cases, we use failure rates of used components as 0.00001/hour while those under repair as

0.000001/hour. The phase durations for cases 1, 2, 5, and 6 are 10 hours while in other four cases, 3, 4, 7, and

8, are 100 hours. In even number cases, the analysis is done by ignoring repairs while odd cases include repairs.

Table 2 contain the results obtained in all cases.

First notice the multiplication factors for each row. A factor of 10 di�erence is there due to the mission

(phase) times. Next, when we ignore repairs, we notice a substantial change in unreliability values obtained in

the �rst four cases when the failure rates are the same whether a component is being repaired or not. Thus

repairs must be accounted for in such cases. More interesting results are obtained when the components being

repaired have an order of magnitude smaller failure rates (cases 5-8). In these cases, ignoring repairs impacts the
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results but in this example the di�erence is not substantial. So one may choose one vs another analysis based

on parameter values.

Example 2. For example 2, we consider the three components, A, B, and C, system with two phase con�g-

urations AND and OR and three phases. In each phase one component is not used. Suppose component A is

not used in phase 1, component B is not used in phase 2, and component C is not used in phase 3. There are

eight possible combinations (AND or OR in each phase). We will not write expressions for PFCs and LPFCs

for all cases here. But to demonstrate how to derive them, for one case when Phase 1 is OR(B;C), phase 2 is

AND(C;A) and phase 3 is AND(A;B). Then

PFC12 = PFCOR(B;C)1AND(C;A)2 = (b1 + c1)(c2 + a2)

and

PFC23 = PFCAND(C;A)2AND(A;B)3 = (c2 a2)(a3 + b3)

as computed in Equation 8. We can also compute PFC13 using the recurrence relation to obtain

PFC13 = PFC12E3 = (b1 + c1)(c2 + a2)(a3 + b3):

To compute the probabilities of these expressions, we need to expand the expression in mutually exclusive

terms. It should be noted that when expressions are in product of expressions form, each product expression can

be independently expanded into mutually exclusive terms. Then a product expansion will give all terms which

are mutually exclusive. So using this, we compute probabilities of PFCs as given below for this case.

P (PFC12) = P ((b1 + c1)(c2 + a2) = P ((b1 + b1c1)(a2 + a2c2))

= P (a2b1) + P (a2b1c2) + P (a2b1c1 + P (a2b1c1c2)

P (PFC13) = P ((b1 + c1)(c2 + a2)(a3 + b3)) = (b1 + b1c1)(a2 + a2c2)(a3 + a3b3)

= P (a2a3b1) + P (a2a3b1c1) + P (a2a3b1b3) + P (a2a3b1b3c1)

= +P (a2a3b1c2) + P (a2a3b1c1c2) + P (a2a3b1b3c2) + P (a2a3b1b3c1c2)

PFC23 = P ((c2a2)(a3 + b3) = a2c2(a3 + a3b3))

= P (a2c2a3) + P (a2c2a3b3)

(14)

We programmed each of the eight possible cases. We used failure rate for each component to be 0.0001/hour

and repair rate to be 0.1/hour whereever applicable in a 10 hours/phase mission. The results for eight cases are

shown in Table 3. Here in phase name \A" means AND phase and \O" means OR phase. Then, we assumed

that the failure rate for the component under repair is small, i.e., 0.00001/hour and recomputed all the eight

cases. These results are in Table 4. One can notice the di�erence in unreliability in the two cases. We are not

showing the results when we ignore the repairs altogether but, we noticed that the di�erence is signi�cant in the

�rst case and relatively less in the second case.
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Table 3: Unreliability for eight cases with same failure rates

Case EP1 BP2 EP2 BP3 EP3

AAA 9.99000583e-07 1.62990993e-06 4.25556226e-06 5.88170181e-06 9.49979360e-06

OAA 1.99800133e-03 1.99800133e-03 1.99962799e-03 2.00065528e-03 2.00390329e-03

AOA 9.99000583e-07 1.63072502e-03 3.62546817e-03 3.62546817e-03 3.62745761e-03

OOA 1.99800133e-03 2.62859528e-03 4.62134468e-03 4.62134468e-03 4.62296705e-03

AAO 9.99000583e-07 1.62990993e-06 4.25556226e-06 2.62891027e-03 4.62165904e-03

OAO 1.99800133e-03 1.99800133e-03 1.99962799e-03 4.62239334e-03 6.24453356e-03

AOO 9.99000583e-07 1.63072502e-03 3.62546817e-03 4.62103010e-03 6.60979861e-03

OOO 1.99800133e-03 2.62859528e-03 4.62134468e-03 5.25028105e-03 7.23779231e-03

Table 4: Unreliability for eight cases with low failure rates for components while under repair

Case EP1 BP2 EP2 BP3 EP3

AAA 9.99000583e-07 1.06211526e-06 3.12110793e-06 3.57805367e-06 6.06492674e-06

OAA 1.99800133e-03 1.99800133e-03 1.99906133e-03 1.99912829e-03 2.00124603e-03

AOA 9.99000583e-07 1.06264640e-03 3.05852457e-03 3.05852457e-03 3.05994942e-03

OOA 1.99800133e-03 2.06108445e-03 4.05496774e-03 4.05496774e-03 4.05602555e-03

AAO 9.99000583e-07 1.06211526e-06 3.12110793e-06 1.49368754e-03 3.48870448e-03

OAO 1.99800133e-03 1.99800133e-03 1.99906133e-03 3.48887187e-03 5.11330514e-03

AOO 9.99000583e-07 1.06264640e-03 3.05852457e-03 3.48807495e-03 5.47910711e-03

OOO 1.99800133e-03 2.06108445e-03 4.05496774e-03 4.11792084e-03 6.10769456e-03

Table 5: Unreliability for \all is well if end is well" case

Case EP1 BP2 EP2 BP3 EP3

��
R 1.89437172e-03 1.89437172e-03 2.52542938e-03 2.52542938e-03 3.38726223e-03

��
N 2.99550450e-03 2.99550450e-03 3.99300567e-03 3.99300567e-03 5.97905190e-03


��R 2.52263933e-10 6.32255388e-04 8.64817157e-04 2.58997399e-03 3.39046756e-03


��N 9.98501249e-10 1.00049817e-03 2.00198537e-03 5.98203595e-03 8.95962123e-03
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Example 3. In our last example, we programmed the third case where the three phases are � = OR, � =

OR�AND, and 
 = OR as shown in Figure 3. We ran four cases for this example. These had two orders ��


and 
�� and in each case there is repair on all components in all phases (R) or no repair on any component (N).

The phases are each of 10 hours durations. The failure rates for each component in each phase is 0.0001/hour.

The repair rates for each component when applicable is 0.1/hour. The results are shown in Table 5. Notice two

things. Once ignoring repairs have signi�cant impact on unreliability due to repairs, in particular for the system

where the success criteria is more stringent during the later phases. With repairs, the unreliability can be almost

maintained at the same levels as is the case in the �rst and the third line.

6 Managing Phased-Mission Systems with Repairs Using RBDs

It should be mentioned that this analysis can also be carried out using RBDs. Recall that in [5] each component

X model in phase p is replaced by a series of events x1x2 � � �xp. In case of repairs, each component model will

be a parallel series model derived out of component up/fail tree as shown in Figure 4. There will be up to

2p�1 parallel branches. Each branch represents one unique path from root to one of the leaf U node in the tree.

Notice that if a particular phase does not have repair on a particular component, then the tree does not have

any expansion from that the intermediate D node in the tree. The rest of the analysis remains the same.

7 Conclusions

We have presented a technique to analyze phased-mission systems including component repairs whose phase

success criterias can be expressed using fault trees. This technique yields accurate results and is simple in

concept and computation. For this purpose, we enhanced phase algebra to include the e�ects of phases that

allows us to e�ciently compute the probabilities of all possible combinations contributing to failure in phased-

mission systems during individual phases. This technique is very useful for a large class of systems where during

the long mission times the system includes repairs but system operational behavior can be described using fault

trees. Several examples have been included to show the e�ects of repairs and how to manage it computationally.

Currently we are incorporating these techniques in reliability analysis tools.
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